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Introduction i
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e DESICOS Project: New Robust Design Guideline for Launch Vehicle Structures
e Strong requirement for more robust, lighter and cheaper launch vehicle structures
e Unstiffened cylindrical shells used in launch vehicles [1,2]

e Shells are prone to buckling and are highly sensitive to imperfections which arise during the
manufacturing process [3—5]

e Imperfections facilitate drastic variation of buckling load from theoretically perfect structure
[6,7].
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Current Design Guldellne e

e The current design guidelines [8] for imperfection sensitive shells are based on the NASA-SP 8007 [9] which ==

dates from 1968.
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Figure 2. Knock-down factors are derived from empirical data in NASA SP-8007. [9]
e First calculate the theoretical buckling load of a geometrically perfect structure by performing a linear
bifurcation analysis using closed-form equations.

e Theoretical buckling load is then reduced by applying an empirical knockdown factor to account for the
differences between theory and test.

* From recent literature [10,11], the NASA-SP 8007 knockdown factors were determined to be exceedingly
conservative.

e Unsuitable for shells constructed from modern manufacturing processes and materials such as composites.
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Analytical and Numerical Methods

In 1945, Koiter [3] pioneered an analytical method to incorporate ‘classical’ geometric imperfections.

AAAAAAAAA

Effort to determine the effects of initial geometric imperfections on the buckling response by analytical means
through digital computers [12,13].

Realistic imperfections diverge from the strictly sinusoidal imperfection shapes [7,14-16].
Also possess a variety of ‘unclassical’ imperfection types.

‘Unclassical’ imperfections include:
* thickness imperfections,
* material property imperfections and,
* initial loading imperfections [17].

Computational power available today and structural analysis codes enables stochastic analysis [17-22].
Stochastic methods facilitate useful robust simulation studies.

Sheer number of possible imperfections means it is impossible to develop design criteria using experimental
data alone.

Numerical investigation can be achieved more rapidly and robustly than experimental investigation.
Imperfections imposed on numerical models are representative of real imperfections.

Realistic modelling is also important to prevent excessively conservative designs and to ensure an optimised,
cost-efficient and light-weight structure.

Ccacs




e

Stochastic Methods i

Stochastic simulation of geometric imperfections has been achieved previously.

Method of separation [23] and spectral representation method [21,24,25] have previously been used to
generate geometric imperfections on both isotropic [23] and orthotropic [18,19] cylinders.

Geometric imperfections treated as random fields.

In [18,19], evolutionary power spectra of the geometric imperfections were used in the spectral representation
method to generate one hundred cylinders with geometric imperfections that conform to the statistical
margins of the original experimentally tested shells.

Previous work does not account directly for thickness and material imperfections.

Experimentally measured thickness imperfections added to analysis and material imperfections were inferred
using a finite-element based moving-window averaging technique.

To extend the work of [19], this paper analyses existing thickness data from nominally identical composite
cylinders to ascertain the characteristics of the thickness imperfections.

This method characterises thickness imperfections and also takes into account ply gaps and resin distribution
independently.

Imperfection characteristics used to generate stochastic results for thickness imperfections from which
material imperfections can be inferred.

Virtual cylinders can be rapidly numerically studied to determine the role that thickness and material

imperfections play on the buckling behaviour, without the prohibitively large expense of fabricating and testing
of a large number of cylinders.
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Experimental Background e

. Imperfection database of eight nominally identical CFRP IM7/8552 UD ultrasonic scanned and tested RusTEAL 5
cylinders (labelled non-consecutively from Z15-Z26) acquired from a joint DLR-ESA research program [7,26].

. The DLR-ESA cylinders representative of imperfection sensitive design.

J Sensitivity of the axial buckling load to each imperfection type is magnified.

Table 1. Nominal properties of DLR-ESA cylinders [7].

Property Nominal Data

Total length (mm) 540
Free length (mm) 500
Radius (mm) 250
Lay up [+24/+41]
Ply Thickness (mm) 0.125
Longitudinal Young’s modulus, E, . (GPa) 157.4
Transverse Young’'s modulus, E, . (GPa) 10.1
Shear modulus, G,, . (GPa) 5.3
Shear modulus, G,, . (GPa) 4.0
. Thickness imperfection readings provided as a set of pixels.
. Each pixel represents one thickness measurement.
J Thickness measurements are discrete, each cylinder was represented by 513 pixels in the circumferential

direction and 183 pixels in the axial direction = total number of 93,769 pixels.
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Method

1. Hough Transform [27] used to separate ply gaps and overlaps from
variations in matrix.

CRC

AUSTRALIA

2. Matrix properties characterised by power spectrum estimates.

B[l (] - 2zS(w,x)da)

3. Power spectrum S(w) is homogenous if depends only on frequency.
Evolutionary S(w,x) if depends on frequency w and spatial localization
(x). Improved methods of estimating the power spectrum include:
1. Short Time Fourier Transform (STFT) [28],
2. Harmonic Wavelet Transform [29] and,
3. Method of Separation.

4. Monte Carlo analysis used to generate new ply gap imperfections.

5. Spectral representation method used to generate new resin-matrix
distribution imperfections.

6. Monte-carlo results superimposed onto spectral representation
results.

7. Material imperfections inferred from thickness imperfections through
moving-window averaging technique [19].

8. New material imperfections assembled into finite element analysis
and compared with experimental results.
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The Hough Transform POS

e Imperfection database of eight nominally identical CFRP IM7/8552 UD ultrasonic scanned and CRC
tested cylinders (labelled non-consecutively from Z15-Z226) was acquired from a joint DLR-ESA
research program. [7,26]

e Available as a collection of pixels, each pixel = one thickness measurement.

e Example of ultrasonic measured thickness imperfections of the Z23 shell structure shown in
Figure 3.

e Deepest imperfections form lines in the exact angles of the composite lay-up.

e Hough transform used to determine collinear points.
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Figure 3. Ultrasonic-scanned real thickness imperfections on the ~ Figure 4. The Hough transform discovers points that are
Z23 cvlinder. 7] collinear.
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The Hough Transform Continued i

AAAAAAAAA

Scan data is periodic in the circumferential direction because it is captured from a cylinder.

Ply gaps and overlaps therefore enter and leave the domain at the circumferential
extremities and reappear at the opposite end.

Data from the left of the domain was copied over to the right and vice versa as shown in
Figure 5.

Once the points are collected, the duplicated regions are deleted.

Figure 5. Simulated period boundary conditions by way of
duplicated data at either end of the domain.
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Figures 6(a) and 7(a) show the thickness imperfections of the Z26 and Z17 cylinders [7]. CRC
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Figure 6(a). Z26 Cylinder.
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Figure 6(b). Points removed from Z26 cylinder are
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Figure 7(a). Z17 Cylinder.
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Figure 7(b). Lines removed from Z17 cylinder reveal the
distribution of the matrix imperfections.
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Power Spectrum Estimation Techniques s
e A 1D benchmark spectra known as the Kanai-Tajimi spectrum [30] was used to validate the CLC
MATLAB script for obtaining the power spectrum of the thickness imperfections.

‘ '
4 o

e The Kanai-Tajimi spectrum is defined by the separable frequency S(w) and spectral g(x)
components shown below [21]:
1+4¢? (a)) p~025% _ ,05x
w, _ -
S(w)= ¢(*)="2

e Where the parameters w,= 10 rad/mm and { = 0.24 represent the natural frequency and
damping ratio, respectively. The exact spectrum is shown below.
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Figure 8. Kanai-Tajimi Spectrum
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Exact Spectrum

* 1D separable spectrum
* Damping ratio: ¢ = 0.24
* Natural frequency: wy = 10rad /mm

Method of separation  S(w.x)=S5, (@) g(x)

2 E f(i) X ’
IWw)=E g(x)= 2ijo(c(u))lw

7L

1 |5
lff(l) (x) -e” " dx
0

* Focuses on energy variations in both the
frequency and spatial axes

* Input samples f(i) (x) need to be approximately
separable so frequency and spatial components
can be dealt with separately

* Narrow-banded spectra: limited to a specified
frequency range, to avoid large distribution errors

* spatial axis must be approximately uniformly
modulated and must not vary significantly

Homogenous spectrum
(N .
S )= E|—- | (x) e d
)= B| 3 |7 ()

* Listhe total sample length

* estimates the frequency distribution of a
spectrum

* no consideration towards spatial variation or
modulating envelope

2

STFT with rectangular windowing function

x+T/2 2

f(i) (x)w(x -x )-e‘i“’xdx

x-T/2

1

%’(w,x) £ 2aT

1 -T/2<x<T/2

0 elsewhere
* Emphasizes spectrum at specific spatial locations

(x = y) also known as windows

* Supresses spectrum components located further
away

* Unable to achieve simultaneous localization in
both frequency and space [28]

* Width of the window reduced to achieve greater
accuracy in the spatial axes, the STFT will sacrifice
information in the frequency axes and vice versa.
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Figure 9. Kanai-Tajimi Spectrum
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Figure 11. Method of Separation spectrum
estimation
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Method of Separatlon PON
. Method of separation provides the most accurate spectrum estimate of the Kanai-Tajimi CLC

spectrum for the least number of stochastic inputs.

J Method of separation has also been used to estimate the evolutionary power spectrum of
geometric imperfections in shells. [18,19,23]

B o | A A

Figures 13,14 and 15. Geometric imperfections have been successfully replicated using the method of separation.

J Due to these advantages and provided that the distribution of the matrix met separability
criteria, the method of separation was first used in an attempt to estimate the power

spectrum of the matrix imperfections.
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Spectral Analysis of Matrlx Imrfectlons 1D STFT

Used to estimate the extent of the narrow-bandedness of the power spectrum of the thickness CRC

imperfections in order to ensure reduced errors in utilising the 2D method of separation. AvwTmaL -

estimate obtained at six equally spaced positions by a non-overlapping rectangular window of length L/6
(where L is the circumference of the cylinder)

Circumferential direction of the lowest axial reading (without the removal of any ply gaps) of the Z15-226
cylinders [7] is shown in Figure 16(a), frequency-side view shown in Figure 16(b). Other spectrum based
estimates for circumferential imperfection readings at various axial lengths exhibit similar behaviour.
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Figure 16(a). STFT spectrum estimates. Figure 16(b). Side view, amplitude in the frequency spectrum.

Approximately 40% of the variation of the energy distribution in the frequency component is limited to
small fixed bandwidth (between 0-0.05rad/mm).

Large section of the energy distribution is represented by the remaining frequencies.

Not sufficient to warrant the use of the method of separation which requires approximately 90% or more of
the main lobe of the energy distribution to be located within a small band-width to avoid large distribution

errors [21]. 4CITACq>
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Spectral Analysis of Matrix Imperfections: 1D STFT

Ply-gap imperfections were removed, only minor improvements in the narrow-bandedness of
the STFT spectrum estimate for variations in the matrix.

Distributions in the matrix imperfections are largely random and contain very few patterns.
Variations in the spatial direction are not uniformly modulated and diverge strongly.
Method of separation is unsuitable for this imperfection type.

The assumption of separability may be worked-around by partitioning the space-frequency
spectrum into parts that are of themselves narrow-banded or approximately separable [25].

However, the spectrum estimates shown in Figures 14(a) and (b) indicate that the spectrum
would have to be partitioned into a very large number of smaller sections.

Each section must then be analysed by the method of separation and then stitched back
together to form the complete spectrum.

The time required to construct the final spectrum may outweigh any inaccuracies produced by
the 2D STFT method.
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The 2D STFT is therefore:

97

;(+QY+2
_ 1 . C (i) ~i(@x+w,y)
L%’(wl,wz,xJ)—E TT “_I;foTyf (x,3)w (x X y- Y’) dxdy
27 2

Where x and y correspond to the circumferential and axial directions respectively
and T, and T, are the widths of the rectangular windowing functions in the

circumferential and axial direction. ¥/ and Y correspond to the centre spatial
location of the windows to be examined in the circumferential and axial directions.
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Spectral Analysis of Matrix Imperfections: 2D STFT é%é

2D STFT coded into MATLAB ATSTRALIA

Imperfections due only to changes in the resin distribution of the Z15-Z26 cylinders added as input
functions.

Resulting 4D function is difficult to plot so data in the frequency and spatial axes in the axial direction have
been supressed for ease of viewing Figures 17(a) and (b).
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Figure 17. Comparison of various rectangular window widths for 2D STFT in the circumferential direction only
(axial values suppressed for ease of viewing), (a) reduction in accuracy of frequency estimate with decreasing
window size and (b) increase in accuracy of spatial estimate with decreasing window size.
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Axial (mm)

Spectral Representation of Matrlx Imperfectlons PN
The spectral representatlon for a 2D Gaussian random field is as follows [23]: CRC

AAAAAAAAA

N -1Ny -1
xy \/_ZE[A cos(a) X+w,, y+¢1 )+A cos(a)lnx_wzmy_l_%(i))]

Where

=\/2S(CU1 s W, 5 X y) Aa)l.AwZ

Where N; and N, determine the discretization within the active frequency range of the circumferential
and axial axes and (l)gl) and (l)g) are the (i)t realizations of N; and N, independent phase angles that are
uniformly distributed in the range [0,2m].

A MATLAB code produced 100 new realisations of the random field. Examples are below and are
compared to actual |mperfect|ons
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(a) (b) (c)
Figure 18 (a) and (b). Sample matrix imperfections generated from the spectral representation method. (c) Actual matrix
imperfections from the Z23 cylinder with the most prominent gap and overlap lines removed.
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Monte-Carlo Analysis of Ply Gaps and Overlaps

e Further analysis on isolated ply gaps and overlaps of eight CFRP IM7/8552 UD real cylinders [7] provide
the statistical properties to generate new imperfections for stochastic analyses.

e The properties of most interest are: the variation in the thickness of the lines, the number of lines at
various angles and the spatial location of these lines.

e The thickness amplitudes of the lines were collected and assumed to be normally distributed.

e Similarly, the spatial distribution of these lines were recorded and utilised to construct a unique
probability distribution as shown in Figure 19(a) and (b) for the -24 degree and 24 lines respectively.
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(a) (b)
Figure 19. (a) Probability distribution of -24 degree gap lines and (b) 24 degree gap lines.
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Axial Length (mm)
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Stochastic Samples CRC

A Monte-Carlo random number generator generated 100 new stochastic fields.

Include variations in that are representative of the statistical properties of the ply gaps in the
original eight nominally identical shells:

* variation in thickness of the lines,
» spatial distribution and location of these lines and;
* quantity of ply gaps/overlaps.

The results from this procedure were superimposed onto the stochastically generated matrix
imperfections. Examples of the results of this process are shown below:
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Figure 20 (a-c). Samples of thickness imperfections generated from spectral representation and Monte-Carlo methods.
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Moving-Window Averaging Technique éia‘c

The scan data from the thickness readings was captured at a higher resolution than the
benchmark mesh density; each element contained approximately 9 pixels.

The corresponding material properties per pixel were averaged over the entire element to
produce the same strains and curvatures as an analysis with nine times the number of
elements.

A version of the moving window averaging technique introduced in [32] and modified by [19]
was used to achieve the average properties.

The modified moving window averaging technique provides the composite-characterising
extensional, bending and coupling matrix for each element by solving the following equation:

(N1 [4 4, 4, B, B, B;][&]
N, Ay A, Ay B, B, Byl||e ;)
N w | _ A, A, A4, B, By, Byl|lr )?y
M, B, B, B; D, D, Dj||Kk,
M, B, B, B, D, D, Dj||k,

_Mxy | _B31 By, By Dy Dy Dy 1% |
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Moving-Window Averaging Technique cRe

AAAAAAAAA

For each element in the full analysis of the cylinder, separate finite-element analyses were
performed on squares which contained the material properties of the corresponding nine pixels.

A variety of unitized axial, shear and bending loads satisfying the left hand side the ABD matrix
equation were individually implemented on the squares as described in Figure 21.

The strains and curvatures from the analyses were recorded.

e The ABD matrix equation was inverted using MATLAB and the A, B, and D matrices were solved for
each element.
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Figure 21. Distributed unitized loads applied to FE squares of 9 elements in the (a) uni-axial y direction,
(b) uni-axial x direction, (c) shear on edges, (d) moment about x-axis and (e) moment about y-axis.
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Moving-Window Averaging Technique ZON
The evolution of the A, B and D matrices for a random stochastically generated cylinder is shown CRC
in Figures 22-24.

The technique successfully captures localized changes in material properties from variations in
the matrix, ply gaps and overlaps.

Figure 22. Evolution of the extensional matrix on a Figure 23. Evolution of the coupling matrix on a
stochastically generated cylinder. Units in N/m. stochastically generated cylinder. Units in N.
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Figure 24. Evolution of the bending matrix on a
stochastically generated cylinder. Units in Nm.
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Numerical Results i

e The cylinders were analysed under compressive load using ANSYS APDL.
e Clamped boundary conditions were applied.

e Displacement controlled shortening was induced to the top of the cylinder which increased
following a linear ramp law.

e Linear 4-node layered shell elements used.

e Refinement study was conducted on a perfect cylinder to determine optimum mesh density.
Between 1,500 and 80,000 elements were analysed. Benchmarked model contains 171 elements
in the circumferential direction and 67 elements in the axial direction.

e A non-linear implicit slow dynamic solver was used with full Newton-Raphson iteration.

e Two non-linear static solvers were initially trialled, one used artificial damping and the other
trialled the arc-length method, however convergence was very difficult to achieve during the
buckling event.

e The buckling load of the perfect cylinder was determined to be 38.2kN.

e Displacement behaviour morphs from three axial half-waves during buckling to a stable post-
buckling pattern at 1mm shortening with two axial half-waves. This behaviour coincides with the
post-buckling patterns shown in [7,18,19].
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Figure 25. Load-shortening results from finite-element analysis of perfect cylinder and cylinder with
stochastically generated thickness imperfections. Scale in mm.
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Figure 27. Results of numerical buckling analysis from stochastically
generated thickness imperfections.

Numerical Results &R¢

Material properties calculated for 100
stochastically generated cylinders using moving
window averaging technique.

Buckling loads for 100 virtual cylinders shown in
Figure 25.

Compared to the perfect numerical buckling
load, the buckling loads with geometric and
thickness imperfections [19], and the
experimental buckling loads [7,19].

Thickness imperfections influence the buckling
load of the cylinders significantly. Can vary
between 29.5 and 40kN from a perfect buckling
load of 38.2kN.

When thickness imperfections are combined
with geometric imperfections [19], the loads are
reduced to a range of 25.0 to 33.3kN.
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Buckling Load (kN)
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Figure 28. Results of knockdown factors from numerical buckling analysis of
stochastically generated imperfections.
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Buckling Load (kN)
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Figure 29. Box plots of FE simulation and test results.
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Application to Truncated Cones e
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Cones of various semi-vertex angles and lay-ups selected:

Top Radius, Ry,
Bottom Radius, Ry

Semi-vertex angle, a

200mm
400mm
5, 15, 30, 45, 60, 75

Orthotropic
Cross-ply

Quasi-isotropic

[+30/-30/-60/+60/0/+60/-60/-30/+30]
[0/90/0/90/90/90/0/90/0]
[0/90/+45/-45/0/-45/+45/90/0]

CFRP IM7/8552

Longitudinal Young’s modulus, E, ,(GPa): 157.4
Transverse Young’s modulus E;;(GPa): 10.1
Shear modulus, G, (GPa): 5.3
Shear modulus, Gy; (GPa): 4.0
Ply thickness: 0.125mm
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Figure 30. Surface generated imperfections on truncated cones with semi-vertex angles (a) a = 15, (b) a = 45°and (c) a = 75.
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Figure 31. Load-displacement curves of perfect and imperfect truncated orthotropic cones with a semi-vertex angle of a = 45.

- =7 N=—¢

33



(a) (b) (c)
Figure 32. View from the top down: passage of buckling of geometrically perfect orthotropic cone with semi-vertex angle of
a =45, (a) buckling begins, (b) spreads out and (c) encompasses the full cone with 9 circumferential half-waves.

(a) (b) (c)
Figure 33. View from the top down: passage of buckling of imperfect orthotropic cone with semi-vertex angle of a = 45, (a)
buckling begins at one point, (b) spreads out and (c) encompasses the full cone with 9 circumferential half-waves.
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Orthotropic Results
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Figure 34. Scatter of buckling loads from stochastic

analysis of orthotropic truncated cones at a = 5, 15, 30,
45, 60°and 75 compared with the classical buckling load.
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Figure 35. KDFs from applying SPLA

truncated cones at a = 5, 15, 30, 45, 60 and 75 compared

with stochastic results.
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Figure 36. Scatter of buckling loads from stochastic analysis of cross- Figure 37. KDFs from applying SPLA on cross-ply truncated
ply truncated cones at a = 5, 15, 30, 45, 60"and 75 compared with the cones at a = 5, 15; 30; 45, 60°and 75 compared with stochastic
classical buckling load. results.
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Buckling Load (kN

Quasi-isotropic Lay-up
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Figure 38. Scatter of buckling loads from stochastic analysis of
quasi-isotropic truncated cones at a = 5, 15, 30, 45, 60°and 75
compared with the classical buckling load.
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Figure 39. KDFs from applying SPLA on quasi-isotropic
truncated cones at a = 5, 15, 30, 45, 60"and 75 compared with
stochastic results.
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Conclusion and Future Work CRC

---------

° Material imperfections generated from the stochastic analysis are representative of the actual
measured shells.

° The size of the knock-down introduced from thickness imperfections is smaller than that found
from geometric and thickness imperfections [19].

° The buckling KDFs determined using stochastic analysis and the SPLA compared well for conical
shells of a certain range of lengths or semi-vertex angles, in this case between 0.155m - 0.2m or
a =45°-60°.

° More simulations would be required to confirm this and should vary the top and bottom radii
to determine whether the methods are suitable for either a particular range of heights or semi-
vertex angles.

° As no experimental data for loading, thickness, material and geometric imperfections were
available for the truncated conical structures; the results of the stochastic analyses rely on data
from unstiffened CFRP cylinders.

° Employing actual imperfection data from conical structures would further increase the accuracy
of the stochastic analysis results.
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